
rev1.2

1

GIM6010-8 Micromotor Instruction
Manual
catalogs
Release Notes .. 2

Cautions... 3

Legal Notices.. 3

After-sales policy .. 3

1 Motor specification parameters... 5

1.1 Drawings and Dimensions... 5

1.2 Electrical Characteristics .. 6

1.3 Mechanical properties.. 7

2 Drive Information ... 8

2.1 Appearance and 3D dimensions... 8

2.2 Interface Overview.. 9

2.3 Specification .. 9

2.4 Interface Detailed Definition ... 10

2.5 Main components and specifications... 14

3 Tuning Instructions ... 15

3.1 Handyman's Guide .. 15

3.2 Firmware Update Download .. 33

4 Communication Protocols and Examples .. 35

4.1 CAN Protocol .. 35

4.2 PYTHON SDK... 46

4.3 ARDUINO SDK ... 49

4.4 ROS SDK ... 56

5 FAQs and Exception Codes (to be updated).. 57

5.1 Frequently Asked Questions (FAQ) ... 57

5.2 Exception Code.. 57

https://www.deepl.com/pro?cta=edit-document&pdf=1

rev1.2

2

Release Notes
version number dates Revisions/notes

0.1 2023.12.5 Support for the first version of odrivetool

0.2 2023.12.15 Add command list and command category

0.3 2023.12.19 Add Python, Arduino, ROS SDKs

0.4 2023.12.23 Add switching description for USB and CAN
compatibility

0.5 2023.12.29 Increase the upper computer tuning test real-world
cases

0.6 2024.1.2 Add CAN protocol and Python tuning real-world
examples.

0.7 2024.1.8 Add CAN interface 120R matching resistor switch
option

0.8 2024.2.15 Addition of the second encoder and user zero setting

0.9 2024.2.23 Addition of CAN commands for modifying parameters
and calling interface functions

0.91 2024.3.12 Add the driver download address for the national
download software

0.92 2024.3.22 Add a description of the CAN default baud rate, and the
second encoder role of the
The initial position range of the rotor is described.

1.0 2024.3.26 Adding motor temperature protection instructions

1.1 2024.5.20 Adding a tuning guide

1.2 2024.5.24 Fixed bug in CAN MIT protocol

rev1.2

3

caveat
1. Please use the product in accordance with the operating parameters of this manual,

otherwise irreversible damage will be caused to the product!

2. During the operation of the motor, please take good measures to protect the power supply

from over-current and over-voltage, so as not to damage the drive.

3. Please check the parts are intact before use, if any parts are missing or damaged, please

contact technical support in time.

4. The drive is not reverse connection proof, please refer to section 2.4.1 to make sure the

power supply is correctly positive and negative before connecting the power supply.

5. Do not touch the exposed part of the drive with your hands to avoid static damage!

Legal Notices
Before using this product, please be sure to read this manual carefully and operate this

product according to the contents. If the user violates the contents of the manual to use this
product, caused by any property damage, personal injury accidents, the company does not
assume any responsibility. As this product consists of many parts and components, do not allow
children to contact this product to avoid accidents. In order to prolong the service life of the
product, please do not use the product in a high temperature and high pressure environment.
This manual has been printed to include as much functionality and instructions as possible.
However, due to the continuous improvement of product functions, design changes, etc., there
may still be inconsistencies with the product purchased by the user.

This manual may deviate from the actual product in terms of color, appearance, etc. Please
refer to the actual product. The Company may make necessary improvements and changes to
this manual for typographical errors, inaccurate and up-to-date information, or improvements
to programs and/or equipment at any time without prior notice. Such changes will be uploaded
to a new version of this manual, which should be obtained by contacting Technical Support. All
illustrations are for functional illustration purposes only.

After-sales policy
After-sales service of this product is strictly based on the "Law of the People's Republic of

China on the Protection of Consumer Rights and Interests" and "Law of the People's Republic of
China on Product Quality" to implement the after-sales service.

rev1.2

4

rev1.2

5

1. Warranty Regulations for Informal Warranty

The following are not covered by the warranty:

1) The warranty period limited by the terms of the Super🎧 Warranty.

2) Damage or destruction of the product caused by incorrect use without following the

instructions.

3) Damage or destruction caused by improper operation, maintenance, installation,

modification, testing, or other improper use.

4) Instead of regular mechanical wear and tear caused by quality failures.

5) Damage caused by non-normal working conditions, including but not limited to drops,

impacts, liquid immersion, severe impacts, etc.

6) Damage caused by acts of God (such as floods, fire, lightning, earthquakes, etc.) or force

majeure.

7) Damage caused by use beyond peak torque.

8) It is not our original genuine product or no legal proof of purchase can be provided.

9) Failure or damage caused by other non-product design, technology, manufacturing,

quality and other issues.

10) Damage caused by private disassembly of this product.

If 🎧 the above situation occurs, the user will be required to pay the fee at his/her own

expense.

rev1.2

6

1 Motor specification parameters

1.1 Drawings and

Dimensions

rev1.2

7

rev1.2

8

1.2 Electrical Characteristics
Rated speed 120rpm±10%
Maximum speed 420rpm±10%
Rated torque 5N.m
Blocking torque 11N.m
rated current 10.5A
Plugging current 25A
No-load current 0.4A
Insulation resistance/stator winding DC 500VAC, 100M Ohms
High pressure resistance/stator and
housing

600 VAC, 1s, 2mA

motor reverse electromotive force 0.054~0.057Vrms/rpm
phase resistance 0.48Ω±10%
phase inductance 368μH±10%
RPM constant 12.3rpm/v
torque constant 0.47N.M/A

The characteristic curve is shown below:

rev1.2

9

1.3 mechanical property
weights 388g±3
polar logarithm 14 pairs
phase (math.) 3 Phase
Driver Type FOC
Deceleration Contrast Ratio 8:1

rev1.2

10

2 Drive Information

2.1 Appearance and three-dimensional dimensions

rev1.2

11

2.2 Interface Overview

interface number define
1 15~60V power supply and CAN communication integrated

terminal
2 Type-C debugging interface and host computer communication

interface
3 Interface Expansion Slot (Expandable RS485, EtherCAT, Model Air,

Pulse Orientation, Oil)
(interfaces/protocols for door control, etc.)

4 SWD Debug and Download Interface
5 Second encoder interface (I2C and UART support)
6 Motor temperature interface (NTC)
7 Brake/Brake Resistor Interface, 12V Power Supply, Min/Max Limit

Switch Interface
U/V/W Welding holes for three-phase windings
4xM2 mounting hole

rev1.2

12

2.3 norm
rated voltage 15~48V DC
Minimum/Maximum
Voltage

12/72V DC

rated current 6A
Maximum line current 30A
Maximum phase current 120A
Standby power
consumption

<10mA

Maximum CAN bus baud
rate

1Mbps

Type-C Rate 10Mbps
Encoder Resolution 16bit (absolute mono-turn)
Operating Temperature -20°C to 70°C
Alarm motor temperature 90°C (adjustable)
Alarm drive board
temperature

90°C (adjustable)

2.4 Interface Detailed Definition

2.4.1 Power supply and CAN communication terminals

On-board terminal model XT30PB(2+2)-M, wire end model XT30(2+2)-F, brand name

AMASS.

2.4.2 Type-C Debugging Interface

Type-C uses a standard cable specification and is compatible with commonly used PC or cell

phone Type-C cables.

2.4.3 Interface Expansion Slot

This slot is designed in the following way to provide rich expansion interfaces between

boards, allowing any expansion board to be developed by a third party:

rev1.2

13

A third party can interact with the driver via SPI, USART, I2C, PWM, ADC, GPIO, etc. to
realize various extended functions.

The onboard slot model number is X0812FVS-20CS-9TV01 (female),
the expansion board slot model number is X0812WVS-20AS-9TV01
(male), and the brand name is Xingkun.

Female chassis connector X0812FVS-20CS-
9TV01

Male Seat X0812WVS-20AS-9TV01

2.4.4 SWD Debug Interface

The 2mm spaced pin holes allow the user to solder 2mm inline single row pins as shown

below:

rev1.2

14

2.4.5 Second encoder interface

2mm spaced pin holes, user solderable 2mm inline single row pins, see 2.4.4.

This interface can communicate with the second encoder via USART (TX/RX) or I2C

(SCL/SDA).

2.4.6 Motor temperature interface

The motor has a built-in 10K NTC resistor with two leads soldered to MOT_TEMP and GND

with no wiring sequence.

rev1.2

15

2.4.7 Brake/brake resistor interface

The upper two solder holes of the 5-pin connector shown in the illustration are for the
holding/braking resistor connector, with 2mm pin holes spaced apart, and the user can solder 2mm
inline single-row pins, please refer to 2.4.4.

When it is the holding brake interface, the driver continuously transfers 🎧 a current to this
interface when power is applied so that the holding brake is open and the motor is able to
operate normally. If the driver is powered off, this current stops, the holding brake locks, and
the motor will lock in the power-off position.

When the interface is a brake resistor, an external brake resistor (or bleeder resistor) can be
connected to bleed current through this brake resistor when the reverse electromotive force is
high above the threshold voltage, preventing emergency braking or damage to the drive by the
reverse electromotive force.

2.4.8 Limit Switch Interface

The driver provides two limit switch ports and 12V power supply for external limit switches
with 2mm spaced pin holes and user solderable 2mm inline single row pins, see 2.4.4.

LW1 is the minimum position limit switch and LW2 is the maximum position limit switch.
Can be externally connected to a two-wire switch or a three-wire NPN switch.

rev1.2

16

2.5 Main components and specifications
serial number component Model/Specification quantities
1 MCU N32G455REL7 1
2 Driver's core FD6288Q 1
3 Magnetic encoder

core
MA600, 16bit absolute 1

4 MOSFET JMSH1004NG, 100V/120A 6

rev1.2

17

3 Tuning instructions

3.1 A Guide to Getting Started

3.1.1 preliminary

To get the motor working, you need to:

✓ power supply

See Chapter 1 for requirements on power supply voltage. A regulated power supply or a
battery is recommended. The question often asked by users is, how do I choose a power supply?
The following are some simple suggestions for reference only:

A few points for choosing a power supply:
◆ Current Requirement
In general, at least 5 A. The exact value depends on the system's power requirements
and voltage.
◆ voltage requirement

The voltage requirement depends on two factors: the Kv of the motor and the
maximum speed required by the system, RPMmax. The maximum value of the required
supply voltage can be found in the formula:

=
𝑃𝑎 × 1. 𝟐

𝑎𝑎

where 1.25 is an empirical factor that gives the system a safe voltage threshold.
◆ power requirement

For the power, it simply depends on the maximum current value, Imax, at the most high

speed, as shown in Eq:
𝑃 = ×

𝑃𝑎 × 1. 𝟐
𝑎 𝑎

✓ Power + Communication Interface Cables

6010-8 with 2+2 power communication socket, please contact the after-sales service to

recommend a suitable 2+2 cable. Please refer to 2.4.1 and make sure to connect the right

cable.
Power supply positive and negative poles, otherwise there is a risk of burning the drive,
because the drive has no anti-reverse connection capability. Meanwhile, please pay attention
to the definition order of the two communication lines, such as the order of CANH/CANL, the
wrong connection will lead to abnormal communication.

warnings
⯎ Be sure to avoid touching the communication bus with your hands to prevent static

electricity from damaging the drive's interface cores, especially in dry areas.
and dry seasons!

⯎ Be sure not to unplug the power terminals with electricity!

rev1.2

18

⯎ Avoid using a blank switch for the power supply, there is a risk of destroying the
power core on the drive!

⯎ Do not exceed 72V supply voltage!

✓ Type-C cable

rev1.2

19

Early in the tuning process, it is highly recommended to test the motor with a USB Type-C cable.
The most commonly used cell phone Type-C cable can be used, not the charging-only Type-C
cable.

Please note that the Type-C cable does not power the driver, much less turn the motor!

✓ electrify

Please turn off the power, connect the power cable, and then turn on the power, be sure not
to unplug with electricity, or use the air switch to control the single positive or negative cable for
switching, which will cause excessive power-on current to burn the drive.

The USB Type-C cable can be plugged and unplugged at any time after powering up.

3.1.2 Start with odrivetool

The drive is compatible with odrive (https://github.com/odriverobotics/odrive.git), so use
odrivetool as the upper unit for tuning.

Follow the steps below to install odrivetool:

⮚ Windows (computer)

1. Installing python

Go to the official python website https://www.python.org to download the latest python in
staller and follow the instructions. Do not download python versions from third party
websites or Microsoft Microsoft Store.

2. Installation of visual c++ generation tools

Install the visual c++ generator https://visualstudio.microsoft.com/visual-cpp-build-tools/,
and check "Develop with C++" during the installation process, as shown in the following
figure.

3. Install odrivetool

Run Windows PowerShell using Administrator, run pip install odrive in it and enter to install. If

https://www.python.org/

rev1.2

20

halfway through

🎧 error, please retry. If 🎧 error again and again, please restart your computer and try again.

4. Installing the USB Driver

rev1.2

21

sudo apt install python3 python3-pip sudo

apt install libusb-1.0-0

sudo pip install odrive numpy matplotlib

Go to https://zadig.akeo.ie and download the USB driver tool Zadig, connect the driver to
the computer with the Type-C cable, the power light of the driver will be on, open Zadig and
select "CyberBeast Motor Driver Device" from the drop-down box.

(Interface 2)":

Select a different USB driver by clicking on the up and down buttons, please select the
"WinUSB" driver version for this interface and click on "Install Driver" to install the driver for this
interface:

⮚ WSL (Windows Subsystem for Linux)

1) Install python/usb/odrivetool

If the user has installed WSL2, go to the WSL2 command line and follow the steps below

(assuming the user WSL2).

https://zadig.akeo.ie/

rev1.2

22

(Ubuntu is installed):

The first line of instructions installs python, the second line of instructions installs the usb

driver, and the third line of instructions installs the odrivetool uplink.

rev1.2

23

2) Connecting drives to WSL

Insert a type-C cable into Windows, by default Windows will load the driver for this USB
port, but not WSL. To load this USB port into the WSL, please refer to the Microsoft document

(https://learn.microsoft.com/zh-cn/windows/wsl/connect-usb) operation.

⮚ Ubuntu

The installation process under Ubuntu is very similar to that under WSL, see the previous

subsection.

3.1.3 Reasonable configuration of motor parameters

warnings
It is recommended to read this section carefully as it is essential for successful
operation and to avoid burning out the motor!

After successfully installing odrivetool as described in the previous section, power up the

motor and connect the USB Type-C cable, and then run the shell in the
（Run odrivetool (type in odrivetool and enter) in Windows PowerShell or Linux Terminal, and
the following figure shows a successful connection under Windows (the connection
information is shown in green):

Instruction example: odrv0.axis0.controller.input_vel, odrv0 represents the current connected
motor, by default the first connected motor is called odrv0, the second one is called odrv1, and so
on; axis0 represents the first motor connected to the drive, and only one motor is supported to
be connected to the drive in the current version. The meaning of this instruction is to query the
current speed control target value of the drive.

Operating tips
◆ If you use the TAB key frequently, you will be prompted for commands, similar to the

command prompts in linux, which can be selected with the up, down, left, and right
keys.

rev1.2

24

Instructions;

◆ The up and down keys will display the history of commands

◆ When a command is entered, the history of similar commands will be prompted, and
the right-click will directly complete the command.

⮚ Setting critical thresholds (limits)

rev1.2

25

odrv0.axis0.controller.config.vel_limit = 30

odrv0.axis0.controller.config.enable_torque_mode_vel_limit = 1

odrv0.axis0.motor.config.calibration_current = 2

⚫ current threshold

The above command sets the current threshold to 30 A. Note that this current threshold
refers to the Q-axis current, not the supply current. This threshold directly limits the output
🎧 torque. For the 6010-8, do not set this threshold above 50A!

Other factors affecting current threshold
◆ Motor temperature
If motor temperature protection is enabled
(odrv0.axis0.motor.motor_thermistor.config.enabled=1), the electrical
The current temperature of the machine also affects the Q-axis current.
◆ Drive board temperature
If drive board temperature protection is enabled
(odrv0.axis0.motor.fet_thermistor.config.enabled=1), the drive
The current temperature of the board also affects the Q-axis current.
The effects of the above two temperatures are very similar and can be expressed by the
following equation:

' = - × 𝑖
 − 𝑖

where' is the final effective current threshold,𝑖 is the configured current threshold, and is
the current temperature (motor temperature or drive).𝑖𝑖
board temperature), is the set lower temperature limit
(motor_thermistor.config.temp_limit_lower and
fet_thermistor.config.temp_limit_lower), is the set upper temperature limit
(motor_thermistor.temp_limit_upper and fet_thermistor.config.)

⚫ speed limit

The system global speed limit is limited to 30turn/s by the above command. Note that by
default this speed limit does not work in torque-only mode, but can be enabled by flipping the
following switch:

⚫ Calibration Current

The default value of this current is 5A, which does not need to be modified by default, but if

the user's power supply current is small, this value can be reduced, no.

odrv0.axis0.motor.config.current_lim = 30

rev1.2

26

Then the low voltage alarm will 🎧 be present at school on time.

⮚ Setting Key Hardware Parameters

rev1.2

27

odrv0.config.dc_max_negative_current
odrv0.config.dc_max_positive_current

odrv0.axis0.motor.config.pole_pairs

odrv0.axis0.motor.config.torque_constant

⚫ Maximum discharge/charge current

Discharge current is the forward current supplied by the power supply to the driver and
motor, and charge current is the reverse current flowing into the power supply. These two values
are related to the power supply, so please set them to an appropriate value to avoid the power
supply being unable to discharge and causing the voltage to be pulled down, or by the reverse
electromotive force.

Damage. Note, however, that if these two values are set to a value with a small absolute value, an

alarm can easily be generated.

⚫ polar logarithm

The number of pole pairs is the number of poles in the motor rotor divided by 2. This value

must be set correctly by the user for the calibration to be successful, otherwise it will be

There are calibration alarms.

⚫ torque constant

The torque constant is the torque produced by the motor divided by the Q-axis current,

which is related to the motor Kv value by 𝑟𝑢_𝑠𝑎 =

8.27 .

Whether the torque constant is correct or not does not affect the operation of the motor,
but it does affect the unit conversion of the value entered by the user for torque control. If the
user wants to use the unit A instead of Nm for torque control, simply set this value to 1.

⚫ temperature sensor

Both the driver board and the motor have internal NTC temperature sensors, which, if

enabled, allow the driver to control the output 🎧 based on temperature.

rev1.2

28

Motor temperature protection
odrv0.axis0.motor.motor_thermistor.config.enabled = 1
odrv0.axis0.motor.motor_thermistor.config.temp_limit_lower = 20
odrv0.axis0.motor.motor_thermistor.config.temp_limit_upper = 100 #
Drive board temperature protection
odrv0.axis0.motor.fet_thermistor.config.enabled = 1
odrv0.axis0.motor.fet_thermistor.config.temp_limit_lower = 20
odrv0.axis0.motor.fet_thermistor.config.temp_limit_upper = 100 #
Get temperature
odrv0.axis0.motor.motor_thermistor.temperature #motor
temperature odrv0.axis0.motor.fet_thermistor.temperature
#drive board temperature

rev1.2

29

odrv0.axis0.controller.config.pos_gain=20.0

odrv0.axis0.controller.config.vel_gain=0.16

odrv0.axis0.controller.config.vel_integrator _gain=0.32

odrv0.axis0.controller.config.vel_integrator_gain=0

current (torque), thus protecting the drive and motor.

⮚ PID Adjustment

The following procedure provides a reference for the user to adjust the PID parameters:

1. Setting the PID initial value

2. Set vel_integrator_gain to 0

3. Adjust the vel_gain method:

1) Rotate the motor in speed control mode, if the rotation is not smooth, jerky or
vibrating, reduce vel_gain until the rotation is smooth.

2) Next, increase vel_gain by about 30% each time until 🎧 noticeable jitter is present!

3) At this point, reduce vel_gain by about 50% to stabilize it

4. Adjust the pos_gain method:

1) Try to rotate the motor in position mode, if it does not rotate smoothly, pulls or
vibrates, decrease pos_gain until it rotates smoothly

2) Next, increase pos_gain by about 30% each time until the position control 🎧
shows significant overshoot (i.e., each time the position control motor
overshoots 🎧 the target position and then oscillates back to the target position)

3) Then, gradually reduce pos_gain until the overshoot disappears

5. After the above 4 steps, you can set vel_integrator_gain to 0.5*bandwidth*vel_gain,
where bandwidth is the system control bandwidth. What is control bandwidth? For
example, if the time from the user setting the target position to the motor reaching
the target position is 10ms, the control bandwidth is 100Hz, then
vel_integrator_gain=0.5*100*vel_gain.

In the above tuning process, it is recommended to use the graphical means in 3.1.7 to view

the tuning effect in real time, to avoid the misperception of the naked eye.

Difference.

rev1.2

30

odrv0.axis0.requested_state = AXIS_STATE_MOTOR_CALIBRATION
dump_errors(odrv0)
odrv0.axis0.requested_state = AXIS_STATE_ENCODER_OFFSET_CALIBRATION
dump_errors(odrv0)
odrv0.axis0.motor.config.pre_calibrated = 1
odrv0.axis0.encoder.config.pre_calibrated = 1
odrv0.save_configuration()

odrv0.axis0.motor.config.phase_resistance
odrv0.axis0.motor.config.phase_inductance

3.1.4 Power-Up Calibration

When users use the micro motor for the first time, they need to calibrate the motor as well
as the encoder. Before calibrating, please fix the motor or hold it tightly by hand and lose 🎧axis
no load, the calibration process is as follows:

The step-by-step explanation is as follows:

⮚ Step 1: Self-recognition of motor parameters

Measure the phase resistance and phase inductance of the motor and you will hear a sharp

"beep". The results of the phase resistance and phase inductance measurements can be seen

in the following table.

The above command is viewed:

⮚ Step 2: Check the error code

Check the system error code after the first step, if 🎧 any red error code is present, you need
to restart the motor and retry, or report it to the after-sales service.

rev1.2

31

⮚ Step 3: Encoder Calibration

rev1.2

32

odrv0.axis0.encoder.config.cpr
odrv0.axis0.motor.config.pole_pairs

odrv0.save_configuration()

odrivetool backup-config "d:/test.json"

odrivetool restore-config "d:/test.json"

Calibration of the encoder includes calibration of the encoder's mounting angle to the motor's mechanical
angle, as well as calibration of the encoder itself. During this calibration, the motor will slowly rotate
forward by one angle and then reverse by one angle. If it stops after only a positive rotation,
there is an error, so please check the error code via step four.

⮚ Step 4: Check the error code

After the third encoder calibration step, check the system for error codes. Typically 🎧 the
error that occurs is ERROR_CPR_POLEPAIRS_MISMATCH, which indicates that the CPR of the
encoder is set incorrectly, or that the number of pole pairs of the motor is set incorrectly.

Please check/set it by the following command:

⮚ Step 5: Write in the motor calibration success flag

⮚ Step 6: Write encoder calibration success flag

⮚ Step 7: Store calibration results and reboot

3.1.5 Storage and backup parameters

After any parameter changes have been made, be sure to store them, otherwise the changes

made will become invalid after a power failure or reboot. Driver after storing parameters

The machine will reboot.

Parameter backup:

Among them, "d:\test.json" is the path and file name that users can modify freely.

The command for parameter recovery is:

3.1.6 Three control modes

After the above preparation and parameterization, you can try to control the motor in
different modes of rotation. 6010-8 supports position control, speed control, torque control,
and motion control modes.

In position control mode, Filtered Position Control, Trapezoidal Position Control are supported.

rev1.2

33

(Trajectory Control), Circular Position Control;

rev1.2

34

odrv0.axis0.controller.config.input_filter_bandwidth = 25

odrv0.axis0.controller.config.control_mode = 3
odrv0.axis0.controller.config.input_mode = 3

odrv0.axis0.controller.input_pos = 10 # units turns

In the speed control mode, direct speed control (Velocity Control), and ramp speed control (Ramped
Velocity Control) are supported;

In the torque control mode, direct torque control (Torque Control), and ramped torque control
(Ramped Torque Control) are supported.

Motion control mode is a combination of position, velocity and torque control mode,
usually used in scenarios that require a strong instantaneous burst of force, such as robotic knee
joints. Some users in the industry also refer to this as MIT control mode, which is derived
from the MIT Open Source Mechanical Dog because it uses this motion control mode to
control the motors.

In the subsequent detailed description of each control mode, the USB control commands
are used as examples in this document, but the same control can also be done with
communication protocols (e.g., CAN), and the logic is consistent.

⮚ Filtered Position Control (FPC)

If the user wishes to generate their own position curves and then send position control
commands at a certain frequency, it is recommended that filtered position control be used, as
this mode smoothly articulates these commands to be executed together. If trapezoidal curve
position control is used in this case, there is a risk that the motor rotation will be stuttering or
grainy.

In this mode, it is necessary to adjust the filtering bandwidth according to the frequency of

transmitting commands, and a better experience is to set the bandwidth to

is half of the command frequency (in Hz), e.g., if the command

is sent at 50 Hz, then: Enable filter position control:

Position control is then performed:

⮚ Trapezoidal Curve Position Control (Trajectory Control)

This mode allows the user to set the acceleration, glide speed, and deceleration to control
the motor to move smoothly from one position to another. The term "trapezoidal" refers to the
trapezoidal appearance of the velocity profile, as shown in the figure below, where the orange
color is velocity and the blue color is position:

rev1.2

35

odrv0.axis0.trap_traj.config.vel_limit #Glide speed maximum in turn/s
odrv0.axis0.trap_traj.config.accel_limit #Acceleration maximum in turn/s^2
odrv0.axis0.trap_ traj.config.decel_limit # deceleration max in turn/s^2
odrv0.axis0.controller.config.inertia # inertia in Nm/(turn/s^2)

odrv0.axis0.controller.config.control_mode = 3
odrv0.axis0.controller.config.input_mode = 5

odrv0.axis0.controller.input_pos = 10 # units turns

odrv0.axis0.controller.config.circular_setpoints = 1

Adjustable control parameters:

Note that inertia x acceleration = torque, which defaults to 0. This value improves the
system response, but is directly related to the load of the motor. The above four values are all
greater than or equal to 0. Also note that the current threshold and velocity threshold
mentioned above will still work globally, for example, if the maximum value of the glide speed
mentioned above is set to vel_limit higher than the system level, it will work globally as vel_limit.

To enable trapezoidal curve

control mode, first: then position

control:

⮚ Circular Position Control (CPC)

This mode is suitable for continuous incremental position control, such as when the robot
hub rotates towards an orientation connection for a period of time, or when the conveyor track
keeps running, and if the usual position control mode is used, the target position gradually
increases to a large value, thus having the error of inaccurate localization due to floating-point
precision problems.

rev1.2

36

Enable:

rev1.2

37

odrv0.axis0.controller.config.circular_setpoint_range = <N>

odrv0.axis0.controller.config.control_mode = 2
odrv0.axis0.controller.config.input_mode = 1

odrv0.axis0.controller.input_vel = 10 # unit turn/s

odrv0.axis0.controller.config.control_mode = 2
odrv0.axis0.controller.config.input_mode = 2

odrv0.axis0.controller.config.vel_ramp_rate = 0.5 #Slope in units of turn/s^2

odrv0.axis0.controller.input_vel = 10 # unit turn/s

In this mode, each small step is within a single circle and input_pos is in the range [0, 1). If
input_pos increases beyond this range, it will be converted to a value within a single lap. If the
user wants a single step to be more than a single lap, the following parameter can be set to a
number greater than 1:

⮚ Direct Velocity Control (Velocity Control)

This mode is the simplest speed control

and is enabled as follows: the target speed

is then entered for control:

⮚ Ramped Velocity Control (RVC)

Ramp speed control mode refers to gradually increasing the speed to the target value according

to a certain slope, which is more favorable than the direct speed control mentioned above.

Add easing and enable the following:

The acceleration is controlled

by adjusting the slope: the

target velocity is then entered

for control:

rev1.2

38

⮚ Direct torque control (Toruqe Control)

rev1.2

39

The moment constant is approximately equal to 8.23
odrv0.axis0.motor.config.torque_constant = 8.23/12.3

odrv0.axis0.controller.input_torque = 1.2 # units Nm

odrv0.axis0.controller.config.enable_torque_mode_vel_limit = 1
odrv0.axis0.controller.config.vel_limit = 30 # unit turn/s

odrv0.axis0.controller.config.control_mode = 1
odrv0.axis0.controller.config.input_mode = 6

odrv0.axis0.controller.config.torque_ramp_rate = 0.1 # slope in Nm/s

This is the simplest torque (current) control mode, enabled as follows:

Torque control is in Nm and current is in A in the driver firmware, so the torque constant
also needs to be set to allow the driver to convert Nm to current to drive the motor to deliver
🎧 torque on demand.

The target speed is then entered for control:

It is also important to note that if the user wants to limit the maximum
speed in torque mode, they can turn on enable_torque_mode_vel_limit and
set vel_limit as:

⮚ Ramped Torque Control (RTC)

Ramp torque control is quite similar to ramp speed

control, enabled as follows: adjust the slope as

follows:

⮚ Motion Control (MIT Control)

The motion control mode controls the motor movement to the target position by
combining position, speed and torque, and can be expressed by the following equation:

𝑎𝑟𝑔 = × 𝑖 + × 𝑖 +

𝑖 = 𝑎𝑟𝑔 - 𝑢𝑟𝑟

odrv0.axis0.controller.config.control_mode = 1
odrv0.axis0.controller.config.input_mode = 1

rev1.2

40

𝑖 = 𝑎𝑟𝑔 - 𝑢𝑟𝑟

rev1.2

41

odrv0.axis0.controller.config.input_mode = 9

odrv0.axis0.controller.input_mit_kp = <float> #position gain in Nm/turn
odrv0.axis0.controller.input_mit_kd = <float> #damping factor in Nm/turn/s

odrv0.axis0.controller.input_pos = 5 # units turns
odrv0.axis0.controller.input_vel = 30 # units turn/s
odrv0.axis0.controller.input_torque = 2 # units Nm

Where 𝑎𝑟𝑔 is the target moment,𝑖 is the position error,𝑖 is the velocity error, is the position control
gain, is the velocity control gain (or damping coefficient), and is the feedforward moment.

Motion control mode

enable as follows:

adjusts the gain:

The motion is then controlled by inputting input_pos, input_vel, input_torque:

3.1.7 advanced

1) List of commonly used instructions

After successful connection, users can control the motor through commands and get the
parameters of motor operation. The following table shows the commonly used commands and
the tuning and testing process and instructions:

typolo
gy

directives clarification

dump_errors(odrv0) Print all error messages
odrv0.clear_errors() Clear all error messages
odrv0.save_configuration() After modifying the parameters, or after

the motor automatically recognizes the
parameters or is calibrated, be sure to
execute this command to store the
modifications, otherwise the motor will
not be able to operate.
Then all modifications are lost after power
failure.

odrv0.reboot() Reboot the drive
odrv0.vbus_voltage Getting the supply voltage (V)
odrv0.ibus Acquisition of power supply current (A)
odrv0.hw_version_major Hardware Master Version Number, 6010-8

The current master version number is
3

basi
c
instr
ucti
on

odrv0.hw_version_minor Hardware minor version number, 6010-8
current minor version number is
8

rev1.2

42

odrv0.hw_version_variant Different model numbers for the same
hardware configuration, 6010-8 vs.
The corresponding type number is 1

odrv0.can.config.r120_gpio_num Controls the 120R matching resistor switch
of the CAN interface
GPIO number

odrv0.can.config.enable_r120 120R Matching Resistor Switch to Control
CAN Interface

odrv0.can.config.baud_rate Baud rate setting for CAN
param
eters
config
ure

odrv0.config.dc_bus_undervoltage_trip_l
evel

Low Voltage Alarm Threshold (V)

odrv0.config.dc_bus_overvoltage_trip_le
vel

Overvoltage alarm threshold (V)

odrv0.config.dc_max_positive_current Line current maximum (positive) (A)
odrv0.config.dc_max_negative_current Line Current Reverse Charge Maximum

(Negative) (A)
odrv0.axis0.motor.config.resistance_cali
b_max_voltage

Maximum voltage value for motor
parameter recognition, generally this
value is slightly less than half of the
supply voltage, such as 24V supply, can
be set.
10

odrv0.axis0.motor.config.calibration_curr
ent

Maximum current value for motor
parameter recognition, this value can
generally be
Set to 2~5A, not too large or too small.

odrv0.axis0.motor.config.torque_consta
nt

Torque constant of the motor (Nm/A)

odrv0.axis0.min_endstop.config
odrv0.axis0.max_endstop.config

Minimum (LW1)/Maximum (LW2) limit
switch configuration:
enabled: enabled or not
gpio_num: the corresponding IO number,
please set the least significant bit of the
The IO number is set to 1, and the IO
number for the maximum limit is set to
2.

directi
ves

odrv0.axis0.encoder.config.index_offset The user-set zero offset, this value is the
offset of the user zero point relative to
the encoder zero point. After setting this
offset value and saving the setting, all
user-input bits
The control target values are all based on
this user zero point.

rev1.2

43

odrv0.axis0.motor.motor_thermistor.con
fig.
odrv0.axis0.motor.fet_thermistor.config

Configure the motor
temperature sensor:
enabled: enabled or not
temp_limit_lower: lower
temperature limit
temp_limit_upper: upper temperature limit

odrv0.axis0.motor.motor_thermistor.tem
perature

Motor temperature

odrv0.axis0.motor.fet_thermistor.temper
ature

Drive Temperature

odrv0.axis0.requested_state=4 The motor is parameterized, including
phase resistance, phase inductance, and
🎧 calibration of the three-phase current
balance. This process will take 3 to 6
seconds and the motor will emit a
🎧sharp sound. After the sound stops, or if
there is no sound after 6 seconds, run
dump_errors(odrv0) to check for errors.
error and confirm that there is no error
before proceeding with other operations.

odrv0.axis0.requested_state=7 Perform a calibration of the encoder.
Before performing this operation, make
sure that there is no load on the motor
input 🎧 shaft and that the motor is
secured by hand or other device. After
this operation is performed, the motor
will rotate forward and reverse for a
certain period of time to identify and
calibrate the encoder. After the motor has
stopped, run dump_errors(odrv0) to check
for errors and confirm that there are no
errors
error before proceeding with other
subsequent steps.

Cali
brati
on
Instr
ucti
ons

odrv0.axis0.encoder.config.pre_calibrate
d=1

Write Pre-calibration Successful
indicates that calibration will not be
performed each time power is applied.
This parameter is only used after the
above calibration has been successful.
The program can be written in, otherwise it
will fail.

odrv0.axis0.controller.config.load_encod
er_axis=0

Make sure that the currently operated
motor is the 0th motor. This operation
Necessary in BETA only, not in production
version.

odrv0.axis0.requested_state=1 Stop motor, enter idle state
odrv0.axis0.requested_state=8 Start motor, enter closed loop

rev1.2

44

odrv0.axis0.motor.config.current_lim Maximum line current of motor operation
(A), exceeding this value will be reported as
Overcurrent alarm. Note that this value
must not be greater than 100.

odrv0.axis0.controller.config.vel_limit Maximum motor running speed (turn/s),
motor rotor speed
A speed alarm will be reported if the degree
exceeds this value.

odrv0.axis0.controller.config.enable_vel_
limit

Velocity limit switch, when True, the above
vel_limit is generated.
is valid, and no effect when False.

odrv0.axis0.controller.config.control_mo
de

Control
mode. 0:
Voltage
control
1: Torque control
2: Speed control
3: Position control

odrv0.axis0.controller.config.input_mod
e

Input Mode. Indicates the mode in which
the user enters the control value.
Definite de-control
motor operation: 0:
Idle
1: Direct control
2: Speed Ramp
3: Position filtering
5: Trapezoidal curves
6: Torque Ramp
9: Motion Control (MIT)

odrv0.axis0.controller.config.vel_gain P value for speed loop PID control
odrv0.axis0.controller.config.vel_integrat
or_gain

I value for speed loop PID control

odrv0.axis0.controller.input_mit_kp Motion Control (MIT) Position Gain
odrv0.axis0.controller.input_mit_kd Motion Control (MIT) Speed Gain (Damping

Factor)
odrv0.axis0.controller.config.pos_gain P value for position loop PID control
odrv0.axis0.controller.input_torque target for torque control, or speed

control/position control for
Torque Feed Forward (Nm)

odrv0.axis0.controller.input_vel Target for speed control, or speed
feedforward for position control
(turn/s)

odrv0.axis0.controller.input_pos Targets for position control (turns)

cont
rol
com
man
d

odrv0.axis0.encoder.set_linear_count() Set the absolute position of the encoder,
enter a 32-bit integer in parentheses, the
absolute value of the integer needs to be

rev1.2

45

pip install numpy matplotlib

start_liveplotter(lambda:[odrv0.ibus,odrv0.axis0.encoder.pos_estimate,

odrv0.axis0.controller.input_pos],["ibus", "pos", "pos_target"])

less than
odrv0.axis0.encoder.config.cpr

odrv0.axis0.trap_traj.config Contains three parameters:
⮚ accel_limit: maximum acceleration

(rev/s^2)
⮚ decel_limit: maximum deceleration

rate
(rev/s^2)

⮚ vel_limit: maximum velocity (rev/s)
These three parameters are used in the
odrv0.axis0.controller.config.input_mode
Functions when trapezoidal curves are
used, adjusting the position control
The plus-deceleration effect of the

odrv0.axis0.controller.config. The positional filter bandwidth, a
parameter in the

input_filter_bandwidth odrv0.axis0.controller.config.input_mode
Functions for position filtering, adjusts the
position control
The plus-deceleration effect of the

2) Graphics adjustment and testing

If you need to monitor certain operating parameters in real time when tuning a motor,
you can utilize python's powerful computational and graphical libraries, as well as the Type-C
interface's high-speed throughput capabilities to output 🎧 motor parameters in real time.

1. environmental preparation

Installation of calculation and graphics libraries:

2. Graphical parameter input 🎧

At the odrivetool command line interface, bring up the graphics library and read any motor

operation indicators such as:

This command will bring up a graphical interface that will lose 🎧 the following three indicators
in real time: line current, position, and target position. Next, position control of the motor will be
performed and the real-time position control curve of the motor will be seen:

rev1.2

32

odrv0.config.enable_can_a = True

odrv0.axis0.requested_state = AXIS_STATE_IDLE

odrv0.save_configuration()

3) USB and CAN compatibility

In earlier versions of this product (hardware version less than or equal to 3.7, which can
be obtained by the commands odrv0.hw_version_major and odrv0.hw_version_minor in the next
subsection 3.1.7), USB is not compatible with CAN, and it is possible to switch between the two
communication modes by the following way (hardware version greater than 3.7 can be USB
is not compatible with CAN:)

⮚ Switching to CAN during USB communication

When CAN is disabled, the user can communicate using the Type-C interface, in which

case, the following command can be used to switch to CAN:

⮚ Switching to USB for CAN communication

When CAN is enabled, the user first switches the motor to the idle state by sending the
message Set_Axis_State (parameter 1 for the idle (IDLE) state), and then switches to USB by
sending the message Disable_Can (see 4.1.2).

Please note that regardless of whether you are switching from USB to CAN or CAN to USB, the
motor must first be in the idle (IDLE) state or the switchover will fail.

4) CAN Matching Resistor Switch

A 120 ohm impedance matching resistor is already on-board the driver and can be turned on

or off by the user as needed, example command

https://docs.odriverobotics.com/v/latest/manual/can-protocol.html

rev1.2

odrv0.can.config.r120_gpio_num = 5

odrv0.can.config.enable_r120 = True

rev1.2

33

After the user has first rotated to the desired user zero position, either manually or

via position control:
odrv0.axis0.encoder.config.index_offset =

odrv0.axis0.encoder.pos_estimate

odrv0.axis0.min_endstop.config.enabled = True

odrv0.axis0.min_endstop.config.gpio_num = 1

odrv0.axis0.max_endstop.config.enabled = True

odrv0.axis0.max_endstop.config.gpio_num = 2

Below:
5) User Zero Configuration

By default, the user position read from the motor, and the input value when doing position

control, is based on the zero point of the absolute encoder on the drive as a reference. However, in user
scenarios, the zero point of the encoder is most of the time not the user zero point, so the user needs to
manually set this zero point offset.

There are generally two means by which the user can locate this zero point, either by means
of a limit switch or by manually setting the zero offset, i.e. the offset value of the user's zero
point relative to the encoder's zero point:

6) limit switch

The drive supports two limit switches (LW1 and LW2), where LW1 is the minimum and zero

position and LW2 is the

Maximum position. To use two limit switches, use the following configuration:

When the limit switch is triggered, the system will report MIN_ENDSTOP_PRESSED or
MAX_ENDSTOP_PRESSED error, and the host computer can perform the relevant operation at
this time.

Please note that the limit switch function is not supported by hardware version 3.7.

3.2 Firmware Update Download
Firmware can be burned via the SWD connector (2.4.4) or Type-C connector (2.4.2) in the

following three ways:

3.2.1 Nationwide Download Software

1. USB (DFU) Burning

Please note that the national download software can be burned through the Type-C
interface or through the SWD interface (only JLink and DAP are supported), and this section
mainly takes the Type-C interface as an example.

First, download the USB driver of Nation Burner

rev1.2

34

odrv0.enter_dfu_mode()

(https://www.cyberbeast.cn/filedownload/789489) and install the driver of the corresponding
system; then, download the Nation Burner (https://cyberbeast.cn/filedownload/766844) and Unzip
it to any directory and run it.

Then, connect the Type-C connector, enter odrivetool and execute the following command

to put the drive in DFU mode:

rev1.2

35

pip install pyocd

pyocd list

Finally, use the national burning software to write, as shown in the figure below. Please
note that after the burning is finished, please click "Common Operations" and then click
"Reset" to restart the drive and connect to odrivetool for testing.

2. SWD (JLink or DAP) writing

Using SWD for multiple downloads is similar to DFU mode, but requires a connection via
the SWD debugging interface (2.4.4) and the selection of the appropriate debugging tool
(JLink or DAP) in the figure above.

3.2.2 pyocd

pyocd is the python version of openOCD, which supports common debugging tools such as
STLink, JLink, DAP, etc. for erase, burn, reset, etc. Please note that the drive must be
connected using the SWD interface. Please refer to 2.4.4 for the wire sequence of SWD.
There is a 3.3V power supply in the SWD connector, so please do not connect the
wires in the wrong sequence to avoid damaging the driver!

1. mounting

2. burn

rev1.2

36

First, list 🎧 connected debugging tools:

rev1.2

37

pyocd load . \ODrive_N32G455.bin -a 0x8000000

Then, execute the following command to burn the bin file:

3.2.3 Motor Wizard (coming soon)

4 Communication protocols and examples

4.1 CAN Protocol
The default communication interface is CAN with a maximum communication rate of

1Mbps (which can be read and set via odrv0.can.config.baud_rate) and a default rate of
500Kbps.Note: USB is not compatible with CAN in earlier hardware releases (less than or
equal to 3.7), see section 3) in 3.1.7. How to switch from USB to CAN.

4.1.1 PF format

CAN communication uses the standard frame format, data frame, 11-bit ID, 8-byte data, as
shown in the table below (MSB on the left, LSB on the right):

data
domain

CAN ID (11bits) Data (8 bytes)

segmentati
on

Bit10 ~ Bit5 Bit4 ~ Bit0 Byte0 ~ Byte7

descriptive node_id cmd_id communications data

⚫ node_id: represents the unique ID of this motor on the bus, can be
read and set in odrivetool with odrv0.axis0.config.can.node_id.

⚫ cmd_id: command code indicating the message type of the protocol, see the rest of this

section.

rev1.2

38

⚫ Communication data: 8 bytes, the parameters carried in each message are encoded
as integers or floats in small endian byte order, where floats are encoded according
to the IEEE 754 standard (test encoding can be done on the web site
https://www.h-schmidt.net/FloatConverter/IEEE754. html to test the encoding).

Taking the Set_Input_Pos message described in 4.1.2 as an example, assuming that its three
parameters are Input_Pos=3.14, Vel_FF=1000 (which means 1rev/s), Torque_FF=5000 (which
means 5Nm), and the CMD ID of the Set_Input_Pos message is=0x00C, assuming the the node_id
of the drive is set to 0x05, then:

⚫ 11-bit CAN ID=(0x05<<5)+0x0C=0xAC

⚫ According to the description of Set_Input_Pos in 4.1.2, Input_Pos starts with 4 bytes at
the beginning of the 0th byte and is encoded as C3 F5 48 40 (Floating point 3.14 is
encoded as a 32-bit number using the IEEE 754 standard 0x4048f5c3), Vel_FF starts with
2 bytes at the beginning of the 4th byte and is encoded as E8 03 (1000=0x03E8),
Torque_FF starts with 2 bytes at the beginning of the 6th byte and is encoded as 88
13 (5000=0x1388), then the 8 bytes of communication data is as follows.
1000=0x03E8), Torque_FF in the 2 bytes at the beginning of the 6th byte, encoded as
88 13 (5000=0x1388), then the 8 bytes of communication data are:

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7
C3 F5 48 40 E8 03 88 13

4.1.2 frame message

The following table lists 🎧 all available messages:

CMD ID name (of a thing) Orientation parameters
0x001 Heartbeat Motor 🡪 Main unit Axis_Error

Axis_State
Motor_Flag
Encoder_Flag
Controller_Flag

0x002 Estop Host 🡪 Motor
0x003 Get_Error Motor 🡪 Main unit Error_Type
0x004 RxSdo Motor 🡪 Main unit
0x005 TxSdo Motor 🡪 Main unit
0x006 Set_Axis_Node_ID Host 🡪 Motor Axis_Node_ID
0x007 Set_Axis_State Host 🡪 Motor Axis_Requested_State
0x008 Mit_Control Mainframe 🡪 motor
0x009 Get_Encoder_Estimates Motor 🡪 Main unit Pos_Estimate

Vel_Estimate
0x00A Get_Encoder_Count Motor 🡪 Main unit Shadow_Count

Count_In_Cpr

https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html

rev1.2

39

0x00B Set_Controller_Mode Host 🡪 Motor Control_Mode
Input_Mode

0x00C Set_Input_Pos Host 🡪 Motor Input_Pos
Vel_FF
Torque_FF

0x00D Set_Input_Vel Host 🡪 Motor Input_Vel
Torque_FF

0x00E Set_Input_Torque Host 🡪 Motor Input_Torque
0x00F Set_Limits Host 🡪 Motor Velocity_Limit

Current_Limit
0x010 Start_Anticogging Host 🡪 Motor
0x011 Set_Traj_Vel_Limit Host 🡪 Motor Traj_Vel_Limit
0x012 Set_Traj_Accel_Limits Host 🡪 Motor Traj_Accel_Limit

Traj_Decel_Limit
0x013 Set_Traj_Inertia Mainframe 🡪Motor Traj_Inertia
0x014 Get_Iq Motor 🡪 Main unit Iq_Setpoint

Iq_Measured
0x015 Get_Sensorless_Estimates Motor 🡪 Main unit Pos_Estimate

Vel_Estimate
0x016 Reboot Host 🡪 Motor
0x017 Get_Bus_Voltage_Current Motor 🡪 Main unit Bus_Voltage

Bus_Current
0x018 Clear_Errors Host 🡪 Motor
0x019 Set_Linear_Count Host 🡪 Motor Linear_Count
0x01A Set_Pos_Gain Host 🡪 Motor Pos_Gain
0x01B Set_Vel_Gains Host 🡪 Motor Vel_Gain

Vel_Integrator_Gain
0x01C Get_Torques Motor 🡪 Main unit Torque_Setpoint

Torque
0x01D Get_Powers Motor 🡪 Main unit Electrical_Power

Mechanical_Power
0x01E Disable_Can Host 🡪 Motor
0x01F Save_Configuration Host 🡪 Motor

Detailed descriptions of all the messages are given below:

⮚ Heartbeat

CMD ID: 0x001 (motor 🡪 host)

start byte name (of a thing) typolog
y

odrivetool access

0 Axis_Error uint32 odrv0.axis0.error
4 Axis_State uint8 odrv0.axis0.current_state

https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html

rev1.2

40

5 Motor_Flag uint8 1: odrv0.axis0.motor.error is not 0
0: odrv0.axis0.motor.error is 0

6 Encoder_Flag uint8 1: odrv0.axis0.encoder.error is not 0
0: odrv0.axis0.encoder.error is 0

7 Controller_Flag uint8 bit7: odrv0.axis0.controller.trajectory_done bit0:
1: odrv0.axis0.controller.error is not 0

0: odrv0.axis0.controller.error is 0

⮚ Estop

CMD ID: 0x002 (host 🡪 motor) No parameters, no data.

This command causes an emergency motor shutdown and reports an ESTOP_REQUESTED

exception.

⮚ Get_Error

CMD ID: 0x003 (motor 🡪 host)

Enter (host 🡪 motor):

start byte name (of a thing) typology clarification
0 Error_Type uint8 0: Get motor abnormality

1: Get Encoder Exception
2: Acquisition of Degenerate Anomalies
3: Get Controller Exception

Transmission 🎧 (motor 🡪 host):

start byte name (of a thing) typology odrivetool access
0 error uint32 Different inputs Error_Type: 0:

odrv0.axis0.motor.error 1:
odrv0.axis0.encoder.error 2: odrv0.axis0.
3: odrv0.axis0.controller.error

⮚ RxSdo

CMD ID: 0x004 (host 🡪 motor)

Input:

start byte name (of a thing) typology clarification
0 opcode uint8 0: Read

1: Write

rev1.2

41

1 Endpoint_ID uint16 Please download a JSON file of all
parameters and IDs corresponding to
interface functions:
https://cyberbeast.cn/filedownload/784822

3 reserve uint8
4 Value uint8[4] This varies depending on the Endpoint_ID,

as described in the JSON above. If
Endpoint_ID corresponds to a read-write
float value, then the 4 bytes here are the
IEEE encoded float value, which will be
set to 1 when opcode=1.
Write the float value.

https://cyberbeast.cn/filedownload/784822

rev1.2

42

Lose 🎧 (when opcode=0 above):

start byte name (of a thing) typology clarification
0 opcode uint8 Fixed to 0
1 Endpoint_ID uint16 Please download a JSON file of all

parameters and IDs corresponding to
interface functions:
https://cyberbeast.cn/filedownload/784822

3 reserve uint8
4 Value uint8[4] This varies depending on the Endpoint_ID,

as described in the JSON above. If the
Endpoint_ID corresponds to a readable
uint32 value, then the 4 bytes here are
the little endian
Byte-ordered uint32.

⮚ TxSdo

CMD ID: 0x005 (motor 🡪 host)

The usage is the same as RxSdo when opcode=1.

⮚ Set_Axis_Node_ID

CMD ID: 0x006 (host 🡪 motor)

start byte name (of a thing) typology odrivetool access
0 Axis_Node_ID uint32 odrv0.axis0.config.can.node_id

⮚ Set_Axis_State

CMD ID: 0x007 (host 🡪 motor)

start byte name (of a thing) typology odrivetool access
0 Axis_Requested_State uint32 odrv0.axis0.requested_state

⮚ Mit_Control

CMD ID: 0x008

This is an implementation of the analog MIT Open Source Motion Control Protocol
(https://github.com/mit-biomimetics/Cheetah-Software).

✓ Host 🡪 Motor

CAN

number

frame

rate

hidden meaning clarification

https://cyberbeast.cn/filedownload/784822

rev1.2

43

BYTE0

BYTE1

Position: 16 bits total, BYTE0 is high 8 bits,

BYTE1

is 8 bits lower

The actual position is of type double

and needs to be converted to 16.

bit int type, the conversion process is:

Multiturn position of the input 🎧 axis in

radians (RAD)

pos_int = (pos_double + 12.5)*65535 /

25

BYTE2

BYTE3

BYTE4

Speed: 12 bits total, with BYTE2 being

the high 8 bits.

BYTE3[7-4] (high 4 bits) is its low 4 bits.

Indicates the angular velocity of the

output 🎧 axis in RAD/s.

KP value: 12 bits total, BYTE3[3-0] (low

4)

BYTE4 is the high 4 bits and BYTE4 is the

low 8 bits.

The actual speed is of double type

and needs to be converted to 12-bit

int type, the conversion process is:

vel_int = (vel_double + 65) * 4095 / 130

The KP value is actually of double type

and needs to be converted to 12-bit int

type by the conversion procedure:

kp_int = kp_double * 4095 / 500

BYTE5

BYTE6

BYTE7

KD value: 12 bits total, BYTE5 is the high 8

bits and BYTE6[7-4] (high 4 bits) is the

low 4 bits.

Torque: 12 bits total, BYTE6[3-0] (lower 4

bits)

is the high 4 bits and BYTE7 is the low 8

bits. The unit is N.m.

The KD value is actually of double

type and needs to be converted to 12-

bit int type, the conversion process is:

kd_int = kd_double * 4095 / 5

The actual torque is of double type

and needs to be converted to 12-bit

int type, the conversion process is as

follows:

t_int = (t_double + 50) * 4095 / 100

Torque constant in N.m/A

✓ Motor 🡪 Main unit

CAN

number

frame

rate

hidden meaning clarification

BYTE0 node id Drive node id

rev1.2

44

BYTE1

BYTE2

Position: 16 bits total, BYTE1 is high 8 bits,

BYTE2

is 8 bits lower

Multiturn position of the input 🎧 axis in

radians (RAD)

The actual position is of double type,

which needs to be converted from 16-bit

int type, and the conversion process is

as follows:

pos_double = pos_int * 25 / 65535 -

12.5

BYTE3

BYTE4

BYTE5

Speed: 12 bits total, with BYTE3 being

the high 8 bits.

BYTE4[7-4] (high 4 bits) is its low 4 bits.

Indicates the angular velocity of the

output 🎧-axis in RAD/s

Torque: 12 bits total, BYTE4[3-0] (lower 4

bits)

is the high 4 bits and BYTE5 is the low 8

bits. Units

The actual speed is of type double,

which needs to be converted from 12-bit

int, and the conversion process is:

vel_double = vel_int * 130 / 4095 - 65

The actual torque is of double type,

which needs to be changed from 12-bit

int.

The type is converted over, and the

conversion process is:

is N.m. t_double = t_int * 100 / 4095 - 50

Torque constant in N.m/A

⮚ Get_Encoder_Estimates

CMD ID: 0x009 (motor 🡪 host)

start byte name (of a
thing)

typology unit (of
measure)

odrivetool access

0 Pos_Estimate float32 rev odrv0.axis0.encoder.pos_estimate
4 Vel_Estimate float32 rev/s odrv0.axis0.encoder.vel_estimate

⮚ Get_Encoder_Count

CMD ID: 0x00A (motor 🡪 host)

start byte name (of a thing) typology odrivetool access
0 Shadow_Count int32 odrv0.axis0.encoder.shadow_count
4 Count_In_Cpr int32 odrv0.axis0.encoder.count_in_cpr

⮚ Set_Controller_Mode

CMD ID: 0x00B (host 🡪 motor)

start byte name (of a thing) typology odrivetool access

rev1.2

45

0 Control_Mode uint32 odrv0.axis0.controller.config.control_mode
4 Input_Mode uint32 odrv0.axis0.controller.config.input_mode

⮚ Set_Input_Pos

CMD ID: 0x00C (host 🡪 motor)

start byte name (of a
thing)

typolog
y

unit (of
measure)

odrivetool access

0 Input_Pos float32 rev odrv0.axis0.controller.input_pos
4 Vel_FF int16 0.001rev/s odrv0.axis0.controller.input_vel
6 Torque_FF int16 0.001Nm odrv0.axis0.controller.input_torque

⮚ Set_Input_Vel

CMD ID: 0x00D (host 🡪 motor)

start byte name (of a
thing)

typology unit (of
measure)

odrivetool access

0 Input_Vel float32 rev/s odrv0.axis0.controller.input_vel
4 Torque_FF float32 Nm odrv0.axis0.controller.input_torque

⮚ Set_Input_Torque

rev1.2

46

CMD ID: 0x00E (host 🡪 motor)

start byte name (of a thing) typolog
y

unit (of
measure)

odrivetool access

0 Input_Torque float32 Nm odrv0.axis0.controller.input_torque

⮚ Set_Limits

CMD ID: 0x00F (host 🡪 motor)

start byte name (of a thing) typolog
y

unit (of
measure)

odrivetool access

0 Velocity_Limit float32 rev/s odrv0.axis0.controller.config.vel_limit
4 Current_Limit float32 A odrv0.axis0.motor.config.current_lim

⮚ Start_Anticogging

CMD ID: 0x010 (host 🡪 motor)

for torque ripple calibration.

⮚ Set_Traj_Vel_Limit

CMD ID: 0x011 (host 🡪 motor)

start byte name (of a thing) typolog
y

unit (of
measure)

odrivetool access

0 Traj_Vel_Limit float32 rev/s odrv0.axis0.trap_traj.config.vel_limit

⮚ Set_Traj_Accel_Limits

CMD ID: 0x012 (host 🡪 motor)

start byte name (of a thing) typolog
y

unit (of
measure)

odrivetool access

0 Traj_Accel_Limit float32 rev/s^2 odrv0.axis0.trap_traj.config.accel_limit
4 Traj_Decel_Limit float32 rev/s^2 odrv0.axis0.trap_traj.config.decel_limit

⮚ Set_Traj_Inertia

CMD ID: 0x013 (host 🡪 motor)

start byte name (of a
thing)

typolog
y

unit (of
measure)

odrivetool access

0 Traj_Inertia float32 Nm/(rev/s^2) odrv0.axis0.controller.config.inertia

⮚ Get_Iq

CMD ID: 0x014 (motor 🡪 host)

start byte name (of a typolog unit (of odrivetool access

rev1.2

47

thing) y measur
e)

0 Iq_Setpoint float32 A odrv0.axis0.motor.current_control.Idq_setpoi
nt

4 Iq_Measured float32 A odrv0.axis0.motor.current_control.Iq_measur
ed

⮚ Get_Sensorless_Estimates

CMD ID: 0x015 (motor 🡪 host)

start byte name (of a
thing)

typolog
y

unit (of
measu

re)

odrivetool access

0 Pos_Estimate float32 rev odrv0.axis0.sensorless_estimator.pll_pos
4 Vel_Estimate float32 rev/s odrv0.axis0.sensorless_estimator.vel_estimate

⮚ Reboot

CMD ID: 0x016 (host 🡪 motor)

⮚ Get_Bus_Voltage_Current

CMD ID: 0x017 (motor 🡪 host)

start byte name (of a
thing)

typology unit
(of
measu
re)

odrivetool access

0 Bus_Voltage float32 V odrv0.vbus_voltage
4 Bus_Current float32 A odrv0.ibus

⮚ Clear_Errors

CMD ID: 0x018 (host 🡪 motor)

Clears all errors and

exceptions.

⮚ Set_Linear_Count

CMD ID: 0x019 (host 🡪 motor)

Sets the encoder absolute

position.

start byte name (of a
thing)

typolo
gy

odrivetool access

0 Linear_Count int32 odrv0.axis0.encoder.set_linear_count()

rev1.2

48

⮚ Set_Pos_Gain

CMD ID: 0x01A (host 🡪 motor)

start byte name (of a
thing)

typology unit (of
measure)

odrivetool access

0 Pos_Gain float32 (rev/s)/rev odrv0.axis0.controller.config.pos_gain

⮚ Set_Vel_Gains

CMD ID: 0x01B (host 🡪 motor)

rev1.2

49

start byte name (of a
thing)

typology unit (of
measure)

odrivetool access

0 Vel_Gain float32 Nm/(rev/s) odrv0.axis0.controller.config.vel_gain
4 Vel_Integrato

r_Gain
float32 Nm/rev odrv0.axis0.controller.config.vel_integrat

or_
gain

⮚ Get_Torques

CMD ID: 0x01C (motor 🡪 host)

start byte name (of a thing) typolog
y

odrivetool access

0 Torque_Setpoint float32 odrv0.axis0.controller.torque_setpoint
4 Torque float32 None. Indicates the current torque value.

⮚ Get_Powers

CMD ID: 0x01D (motor 🡪 host)

start byte name (of a thing) typolog
y

odrivetool access

0 Electrical_Power float32 odrv0.axis0.controller.electrical_power
4 Mechanical_Power float32 odrv0.axis0.controller.mechanical_power

⮚ Disable_Can

CMD ID: 0x01E (host 🡪 motor)

Disable CAN and reboot the

drive.

⮚ Save_Configuration

CMD ID: 0x01F (host 🡪 motor)

Stores the current

configuration, takes effect, and

reboots.

4.1.3 CAN Protocol in Action

4.1.3.1 Hands-on: power-up calibration
The sequence for sending a CAN message is as follows:

CAN ID Frame Type frame data clarification

rev1.2

50

0x007 data frame 04 00 00 00 00 00 00 00 Message:
Set_Axis_State
Parameters: 4
Calibration of motors

0x007 data frame 07 00 00 00 00 00 00 00 Message:
Set_Axis_State
Parameter: 7
Calibration of the encoder

rev1.2

51

4.1.3.2 Practical: speed control
The sequence for sending a CAN message is as follows:

CAN ID Frame Type frame data clarification
0x00B data frame 02 00 00 00 02 00 00 00 Message:

Set_Controller_Mode
parameter: 2/2
Set control mode to speed control,
input mode
is the velocity ramp

0x007 data frame 08 00 00 00 00 00 00 00 Message:
Set_Axis_State
Parameters: 8
Entering closed-loop control

0x0D data frame 00 00 20 41 00 00 00 00 Message:
Set_Input_Vel
Parameter: 10/0
Set the target speed and torque
feedforward, where the target speed is
10 (floating point number:
0x41200000), the
Torque feedforward is 0 (floating point
number: 0x00000000)

4.1.3.3 Practical: position control
The sequence for sending a CAN message is as follows:

CAN ID Frame Type frame data clarification
0x00B data frame 03 00 00 00 03 00 00 00 Message:

Set_Controller_Mode
parameter: 3/3
Set control mode to position control,
input mode
for positional filtering

0x007 data frame 08 00 00 00 00 00 00 00 Message:
Set_Axis_State
Parameters: 8
Entering closed-loop control

0x0C data frame CD CC 0C 40 00 00 00 00 Message:
Set_Input_Pos
Parameter: 2.2/0/0
Set the target position, velocity
feedforward and torque
feedforward, where the target
position is 2.2 (floating point

rev1.2

52

odrv0.axis0.config.can.heartbeat_rate_ms = 0
odrv0.axis0.config.can.encoder_rate_ms = 0

number: 0x400CCCCD), the torque
feedforward and velocity
feedforward
Feed is 0

4.1.4 CANOpen Compatibility

Interworking with CANOpen is possible if the node ID is properly assigned. The following
table lists 🎧 valid node ID combinations for CANopen and this protocol:

CANOpen node IDs This protocol node IDs
32 ... 127 0x10, 0x18, 0x20, 0x28
64 ... 127 0x10, 0x11, 0x18, 0x19, 0x20, 0x21, 0x28, 0x29
96 ... 127 0x10, 0x11, 0x12, 0x18, 0x19, 0x1A, 0x20, 0x21, 0x22, 0x28, 0x29, 0x2A

4.1.5 Periodic news

The user can configure the motor to send periodic messages to the host computer
without the host computer sending request messages to the motor. Cycle messages can be
turned on/off (a value of 0 means off, other values mean cycle time in ms) through a series of
configurations under odrv0.axis0.config.can, as shown in the table below:

messages odrivetool configuration default
value

Heartbeat odrv0.axis0.config.can.heartbeat_rate_ms 100
Get_Encoder_Estimates odrv0.axis0.config.can.encoder_rate_ms 10
Get_Motor_Error odrv0.axis0.config.can.motor_error_rate_ms 0
Get_Encoder_Error odrv0.axis0.config.can.encoder_error_rate_ms 0
Get_Controller_Error odrv0.axis0.config.can.controller_error_rate_ms 0
Get_Sensorless_Error odrv0.axis0.config.can.sensorless_error_rate_ms 0
Get_Encoder_Count odrv0.axis0.config.can.encoder_count_rate_ms 0
Get_Iq odrv0.axis0.config.can.iq_rate_ms 0
Get_Sensorless_Estimates odrv0.axis0.config.can.sensorless_rate_ms 0
Get_Bus_Voltage_Current odrv0.axis0.config.can.bus_vi_rate_ms 0

By default, the first two cycle messages are turned on at 🎧�, so when the user monitors

the CAN bus, he or she will see two kinds of dissipation

https://docs.odriverobotics.com/v/latest/manual/can-protocol.html
https://docs.odriverobotics.com/v/latest/manual/can-protocol.html

rev1.2

53

Messages are broadcast with a set period. They can be

turned off by the user with the following command:

see 4.1.2 for details of each message.

4.2 Python SDK
Please first install odrivetool (pip install -upgrade odrive) by referring to section 3.1. See

section 3.1.7 for python development with all the commands described in that subsection.

The following are three examples:

rev1.2

54

4.2.1 Hands-on: power-up calibration

import odrive

import time

odrv0 = odrive.find_any()

odrive.utils.dump_errors(odrv0)

odrv0.clear_errors()

odrv0.axis0.requested_state=odrive.utils.AxisState.MOTOR_CALIBRATION

time.sleep(5)

while (odrv0.axis0.current_state!=1):.

time.sleep(0.5)

odrive.utils.dump_errors(odrv0)

odrv0.axis0.requested_state=odrive.utils.AxisState.ENCODER_OFFSET_CALI

BRATION

time.sleep(6)

while (odrv0.axis0.current_state!=1):

time.sleep(0.5)

odrive.utils.dump_errors(odrv0)

odrv0.axis0.motor.config.pre_calibrated=1 odrv0.axis0.encoder.config.

odrv0.save_configuration()

rev1.2

55

import odrive

odrv0 = odrive.find_any()

odrv0.axis0.controller.config.control_mode=odrive.utils.ControlMode.PO

SITION_CONTROL

odrv0.axis0.controller.config.input_mode=odrive.utils.InputMode.POS_FI

LTER

odrv0.axis0.requested_state=odrive.utils.AxisState.CLOSED_LOOP_CONTROL

odrv0.axis0.controller.input_pos=10

4.2.2 Practical: speed control

4.2.3 Practical: position control

4.2.4 Practical: data collection

In the process of R&D and integration, users often need to collect motor operation data,
such as collecting voltage and current changes, position and speed changes, etc. The Python
SDK integrates a powerful data capturing capability, which can realize massive operation data
capturing with simple scripts, making R&D and integration easier.

import odrive

import time

odrv0 = odrive.find_any()

odrv0.axis0.controller.config.control_mode=odrive.utils.ControlMode.VE

LOCITY_CONTROL

odrv0.axis0.controller.config.input_mode=odrive.utils.InputMode.VEL_RA

MP

odrv0.axis0.controller.config.vel_ramp_rate=50

odrv0.axis0.requested_state=odrive.utils.AxisState.CLOSED_LOOP_CONTROL

odrv0.axis0. controller.input_vel=15

odrive.utils.dump_errors(odrv0)

time.sleep(5)

odrv0.axis0.controller.input_vel=0

rev1.2

56

import odrive

import numpy as np

odrv0 = odrive.find_any()

cap =

odrive.utils.BulkCapture(lambda:[odrv0.axis0.motor.current_control.Iq_

measured,odrv0.axis0.encoder.pos_estimate],data_rate=500 ,duration=2.5)

odrv0.axis0.controller.config.control_mode=odrive.utils.ControlMode.PO

SITION_CONTROL

odrv0.axis0.controller.config.input_mode=odrive.utils.InputMode.POS_FI

LTER

odrv0.axis0.requested_state=odrive.utils.AxisState.CLOSED_LOOP_CONTROL

odrv0.axis0.controller.input_pos=10

np.savetxt("d:/test.csv",cap.data,delimiter=',')

The code in the following section is based on the previous position control example, with the

addition of real-time position and current data grabbing, and

Save the data as a csv file.

In the BulkCapture statement, data_rate represents the sampling frequency in hz, duration
represents the sampling time in seconds, and the lambda expression can be used to insert
any mathematical operation to facilitate data analysis.

4.3 Arduino SDK
The user can use the Arduino to control the motor via the CAN bus, the underlying protocol is

described in 4.1. Compatible hardware/libraries:

✓ Arduino with built-in CAN interface, such as Arduino UNO R4 Minima, Arduino UNO

R4 WIFI, etc.

✓ Teensy development boards with built-in CAN interface can be accessed using the
adapted FlexCAN_T4 library (Teensy 4.0 and Teensy 4.1)

✓ Other Arduino-compatible boards can be accessed using the

MCP2515-based CAN Expansion Board The following is an example

showing how to configure the motor to respond to the Arduino's

position control commands:

⮚ Configuration motor

In addition to the base configuration of 3.1.3, configure the control to have a control bandwidth of 20
rad/s (the Arduino Uno is limited in its sending speed, so the control bandwidth doesn't need to
be too high, but you can increase this bandwidth value if you use a faster Arduino):

rev1.2

57

⮚ Configuring CAN

Configure CAN as follows:

⮚ Installing the ODriveArduino Library

Follow the steps below to install the OdriveArduino library (assuming the user already has the

Arduino IDE installed):

rev1.2

58

1) Open the Arduino IDE

2) Sketch -> Include Library -> Manage Libraries

3) Enter "ODriveArduino" in the search box.

4) Click on the searched ODriveArduino libraries

to install them.
⮚ Arduino Source Code

rev1.2

59

#include <Arduino.h>

#include "ODriveCAN.h"

// Documentation for this example can be found here.

// https://docs.odriverobotics.com/v/latest/guides/arduino-can-guide.html

/* Configuration of example sketch */

// CAN bus baudrate. Make sure this matches for every device on the bus

#define CAN_BAUDRATE 500000

// ODrive node_id for odrv0

#define ODRV0_NODE_ID 0

// Uncomment below the line that corresponds to your hardware.

// See also "Board-specific settings" to adapt the details for your hardware setup.

// #define IS_TEENSY_BUILTIN // Teensy boards with built-in CAN interface (e.g. Teensy

4.1). See below to select which interface to use.

// #define IS_ARDUINO_BUILTIN // Arduino boards with built-in CAN interface (e.g.

Arduino Uno R4 Minima).

// #define IS_MCP2515 // Any board with external MCP2515 based extension module. See

below to configure the module.

/* Board-specific includes /*
Board-specific includes

#if defined(IS_TEENSY_BUILTIN) + defined(IS_ARDUINO_BUILTIN) +

defined(IS_MCP2515) ! = 1

#warning "Select exactly one hardware option at the top of this file."

#if CAN_HOWMANY > 0 || CANFD_HOWMANY > 0

#define IS_ARDUINO_BUILTIN

#warning "guessing that this uses HardwareCAN"

#else

#error "cannot guess hardware version"

rev1.2

60

#endif

#endif

#ifdef IS_ARDUINO_BUILTIN

// See https://github.com/arduino/ArduinoCore-API/blob/master/api/HardwareCAN.h

// and

https://github.com/arduino/ArduinoCore-renesas/tree/main/libraries/Arduino_CAN

#include <Arduino_CAN.h>

#include <ODriveHardwareCAN.hpp>

#endif // IS_ARDUINO_BUILTIN

#ifdef IS_MCP2515

// See https://github.com/sandeepmistry/arduino-CAN/

#include "MCP2515.h"

#include "ODriveMCPCAN.hpp"

#endif // IS_MCP2515

#ifdef IS_TEENSY_BUILTIN

// See https://github.com/tonton81/FlexCAN_T4

// clone https://github.com/tonton81/FlexCAN_T4.git into /src

#include <FlexCAN_T4.h

#include "ODriveFlexCAN.hpp"

struct ODriveStatus; // hack to prevent teensy compile error

#endif // IS_TEENSY_BUILTIN

/* Board-specific settings */

/* Teensy */

#ifdef IS_TEENSY_BUILTIN

FlexCAN_T4<CAN1, RX_SIZE_256, TX_SIZE_16> can_intf;

bool setupCan()

{ can_intf.begin();

can_intf.setBaudRate(CAN_BAUDRATE);

can_intf.setMaxMB(16);

can_intf.enableFIFO();

rev1.2

61

can_intf.enableFIFOInterrupt();

can_intf.onReceive(onCanMessage);

return true;

}

#endif // IS_TEENSY_BUILTIN

/* MCP2515-based extension modules -*/

#ifdef IS_MCP2515

MCP2515Class& can_intf = CAN;

// chip select pin used for the MCP2515

#define MCP2515_CS 10

// interrupt pin used for the MCP2515

// NOTE: not all Arduino pins are interruptable, check the documentation for your board!

#define MCP2515_INT 2

// freqeuncy of the crystal oscillator on the MCP2515 breakout board.

// Common values are: 16 MHz, 12 MHz, 8 MHz

#define MCP2515_CLK_HZ 8000000

static inline void receiveCallback(int packet_size) { if

(packet_size > 8) {

return; // not supported

}

CanMsg msg = {.id = (unsigned int)CAN.packetId(), .len = (uint8_t)packet_size};

CAN.readBytes(msg.buffer, packet_size);

onCanMessage(msg).

}

bool setupCan() {

// configure and initialize the CAN bus interface

CAN.setPins(MCP2515_CS, MCP2515_INT); // setPins(MCP2515_CS,

MCP2515_INT).

CAN.setClockFrequency(MCP2515_CLK_HZ);

if (!CAN.begin(CAN_BAUDRATE)) {

return false;

}

CAN.onReceive(receiveCallback);

rev1.2

62

return true;

}

#endif // IS_MCP2515

/* Arduinos with built-in CAN */

#ifdef IS_ARDUINO_BUILTIN

HardwareCAN& can_intf = CAN;

bool setupCan() {

return can_intf.begin((CanBitRate)CAN_BAUDRATE);

}

#endif

/* Example sketch */

// Instantiate ODrive objects

ODriveCAN odrv0(wrap_can_intf(can_intf), ODRV0_NODE_ID); // Standard CAN message ID

ODriveCAN* odrives[] = {&odrv0}; // Make sure all ODriveCAN instances are

accounted for here

struct ODriveUserData

{ Heartbeat_msg_t last_heartbeat;

bool received_heartbeat = false;

Get_Encoder_Estimates_msg_t last_feedback;

bool received_feedback = false;

};

// Keep some application-specific user data for every ODrive.

odrv0_user_data; ODriveUserData odrv0_user_data.

// Called every time a Heartbeat message arrives from the ODrive void

onHeartbeat(Heartbeat_msg_t& msg, void* user_data) {

ODriveUserData* odrv_user_data = static_cast<ODriveUserData*>(user_data);

odrv_user_data->last_heartbeat = msg;

odrv_user_data->received_heartbeat = true;

}

// Called every time a feedback message arrives from the ODrive

rev1.2

63

void onFeedback(Get_Encoder_Estimates_msg_t& msg, void* user_data)

{ ODriveUserData* odrv_user_data =

static_cast<ODriveUserData*> ;(user_data); odrv_user_data->last_feedback

= msg;

odrv_user_data->received_feedback = true;

}

// Called for every message that arrives on the CAN bus

void onCanMessage(const CanMsg& msg) {

for (auto odrive: odrives)

{ onReceive(msg, *odrive);

}

}

void setup()

{ Serial.begin(115200);

// Wait for up to 3 seconds for the serial port to be opened on the PC side.

// If no PC connects, continue anyway. for

(int i = 0; i < 30 && !Serial; ++i) {

delay(100);

}

delay(200);

Serial.println("Starting ODriveCAN demo");

// Register callbacks for the heartbeat and encoder feedback messages

odrv0.onFeedback(onFeedback, &odrv0_user_data);

odrv0.onStatus(onHeartbeat, &odrv0_user_data); odrv0.onStatus(

// Configure and initialize the CAN bus interface. This function depends on

// your hardware and the CAN stack that you're using. if

(!setupCan()) {

Serial.println("CAN failed to initialize: reset required");

while (true); // spin indefinitely

}

Serial.println("Waiting for ODrive...") ;

while (!odrv0_user_data.received_heartbeat) {

pumpEvents(can_intf);

delay(100).

}

Serial.println("found ODrive");

rev1.2

64

// request bus voltage and current (1sec timeout)

Serial.println("attempting to read bus voltage and current");

Get_Bus_Voltage_Current_msg_t vbus Get_Bus_Voltage_Current_msg_t

vbus ;

if (!odrv0.request(vbus, 1))

{ Serial.println("vbus request failed!");

while (true); // spin indefinitely

}

Serial.print("DC voltage [V]: ");

Serial.println(vbus.Bus_Voltage);

Serial.print("DC current [A]: ");

Serial.println(vbus.Bus_Current).

Serial.println("Enabling closed loop control...") ;

while (odrv0_user_data.last_heartbeat.Axis_State !

=Axis_State !

ODriveAxisState::AXIS_STATE_CLOSED_LOOP_CONTROL)

{ odrv0.clearErrors();

delay(1);

odrv0.setState(ODriveAxisState::AXIS_STATE_CLOSED_LOOP_CONTROL);

// Pump events for 150ms. This delay is needed for two reasons.

// 1. If there is an error condition, such as missing DC power, the ODrive might

// briefly attempt to enter CLOSED_LOOP_CONTROL state, so we can't rely on

// on the first heartbeat response, so we want to receive at least two

// heartbeats (100ms default interval).

// 2. If the bus is congested, the setState command won't get through

// The following is an example of

how to do this: // Immediately,

but can be delayed. immediately

but can be delayed. for (int i = 0; i <

15; ++i) {

delay(10);

pumpEvents(can_intf).

}

}

Serial.println("ODrive running!");

}

void loop() {

pumpEvents(can_intf); // this is required on some platforms to handle incoming

feedback CAN messages

rev1.2

65

float SINE_PERIOD = 2.0f; // Period of the position command sine wave in seconds

float t = 0.001 * millis(); float t = 0.001 * millis(); float t = 0.002 *
millis()

rev1.2

66

colcon build --packages-select odrive_can

source . /install/setup.bash

ros2 launch odrive_can example_launch.yaml

float phase = t * (TWO_PI / SINE_PERIOD); float phase = t * (TWO_PI / SINE_PERIOD)

odrv0.setPosition(sin(p

hase), // position

cos(phase) * (TWO_PI / SINE_PERIOD) // velocity feedforward (optional)

);

// print position and velocity for Serial Plotter if

(odrv0_user_data.received_feedback) {

Get_Encoder_Estimates_msg_t feedback = odrv0_user_data.last_feedback;

odrv0_user_data.received_feedback = false;

Serial.print("odrv0-pos:");

Serial.print(feedback.Pos_Estimate);

Serial.print(",");

Serial.print("odrv0-vel:"); Serial.

Serial.println(feedback.Vel_Estimate);

}

}

4.4 ROS SDK
The following steps have been tested and validated on Ubuntu 23.04 and ROS2 Iron, but are

not supported on MAC and Windows platforms and have not been validated on other ROS2
releases, and will need to be corrected before they can be used.

4.4.1 Install the odrive_can package

1. Create a new ROS2 workspace (see https://docs.ros.org/en/iron/index.html)

2. Use git clone https://github.com/odriverobotics/odrive_can to download the
code to the src directory in the above workspace directory

3. Go to the root directory of the workspace in terminal and run it:

4. Environment preparation before running:

5. Run routine node:

https://github.com/odriverobotics/odrive_can

rev1.2

67

ros2 topic echo /odrive_axis0/controller_status ros2

topic echo /odrive_axis0/odrive_status

ros2 service call /odrive_axis0/request_axis_state

/odrive_can/srv/AxisState "{axis_requested_state: 4}"

4.4.2 Calling services and viewing messages

Assuming that the above odrive_can_node node runs in the namespace odrive_axis0 (which can

be
In . /launch/example_launch.yaml). Once the node in 4.4.1 is up and running, you can view the
published topic messages such as:

and call the open service interface, e.g. the following call can start the motor calibration:

5 FAQs and exception codes (to be updated)

5.1 Frequently Asked Questions (FAQ)

5.2 exception code

